
Introduction to the BUGS language

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

Thanks to…

• Marc Kéry, who let us use his workshop materials…

Overview

• Bayesian analysis by MCMC (Refresher)

• What is BUGS?

• Using WinBUGS as a stand-alone application (Demo)

• Using BUGS through R (Demo)
WinBUGS R2WinBUGS | JAGS rjags or R2JAGS

• Using BUGS through R (Exercises)
oPoisson & Binomial regression

• Random effects model in BUGS (Exercises)
oBinomial regression with random effects
oOccupancy model for estimating number of occupied patches

Bayesian Inference and
Markov chain Monte Carlo (MCMC) Sampling

A [very!] quick refresher

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]

The Bayesian paradigm

• Data

 observed realization of a random process

 𝑦

• Parameters

 fixed & unknown data generating value, realization of a random process

 𝜃

• Uncertainty about parameters

 Based on variation in data and evaluated using posterior distribution

Bayes‘ Rule

[𝜃 |𝑦] Posterior distribution of 𝜃 given the data 𝑦

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃]

[𝜃] Prior probability distribution of parameters 𝜃

[𝑦] Marginal distribution of data 𝑦

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]

Bayes‘ Rule

[𝜃 |𝑦] Posterior distribution of 𝜃 given the data 𝑦

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃]

[𝜃] Prior probability distribution of parameters 𝜃

[𝑦] Marginal distribution of data 𝑦

[𝑦]: In practice, hard, even impossible, to compute

 Recent method developments that do not require mathematical understanding

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]

𝜃 𝑦 ∝ 𝑦 𝜃 [𝜃]

Bayes‘ Rule

[𝜃 |𝑦] Posterior distribution of 𝜃 given the data 𝑦

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃]

[𝜃] Prior probability distribution of parameters 𝜃

𝜃 𝑦 ∝ 𝑦 𝜃 [𝜃]

Prior probability distribution [𝜃]

• The probability distribution reflecting our prior knowledge about an
unknown parameter/quantity before any evidence is taken into account, i.e.
prior

Prior probability distribution [𝜃]

• The probability distribution reflecting our prior knowledge about an
unknown parameter/quantity before any evidence is taken into account, i.e.
prior

Informative priors

• Way of incorporating prior knowledge about

parameters into the analysis

• Will influence parameter estimate, the magnitude

of the influence depends on relative ‘strength’ of
[𝑦|𝜃] vs. [𝜃]

Prior probability distribution [𝜃]

• The probability distribution reflecting our prior knowledge about an
unknown parameter/quantity before any evidence is taken into account, i.e.
prior

Uninformative/vague priors

• Express lack of prior knowledge about parameters

• Generally preferred for an objective analysis

• Most widely applied

Uninformative/flat prior
Beta(1,1)

Informative prior
Beta(5,10)

Prior probability distribution – detection probability [𝑝]

Likelihood of the data [ݕ|𝜃]

Say we go out and survey 𝑁 = 30 ponds and find frogs present in 𝑦 = 12 ponds (and
we assume 𝑦 is observed perfectly!!). Then the binomial model and likelihood is:

𝑦 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃)

𝑦 𝜃 = 𝜃𝑦 1 − 𝜃 𝑛−𝑦

12 𝜃 = 𝜃12 1 − 𝜃 18

So, we can plug in different values of 𝜃 and calculate the probability of checking 30
ponds and finding 12 with frogs.

• Inference does not focus on estimating a single point value but on characterizing an
entire distribution [𝜃|𝑦]

• Posterior can be characterized by Markov chain Monte Carlo (MCMC) simluation

Posterior inference [𝜃|𝑦]

Markov chain Monte Carlo - MCMC

• Simulation-based evaluation of posterior distribution

• Generates random samples from the posterior

• Markov property: the value of each iteration idepends on the preceding value

• MCMC algorithms are constructed so that the Markov chain converges to the
posterior distribution

MCMC – terminology

“Burn-in”

• Chains are started at “initial values”

• First set of iterations are influenced by initial values

• Transition phase from initial values to stationary distribution = burn-in

• Needs to be discarded!!

“Convergence”

• Has the chain reached its “stationary distribution” (i.e. the posterior)?

• We can assess convergence using:

 Trace plots – we want to see “grassy” chains!

MCMC – terminology

“Convergence”

• Has the chain reached its “stationary distribution” (i.e. the posterior)?

• We can assess convergence using:

 Gelman-Rubin-statistic (𝑅); compares within- and between-chain variation (<1.1)

MCMC – terminology

“Posterior sample size”; “Monte Carlo error”

• MCMC samples are not independent because of the Markov property

• Effective sample size is the number of samples after accounting for autocorrelation

• Determines the MC error – “noise“ introduced into the sample by the stochastic

MCMC process

• You can reduce the MC error by running longer chains

• Rule of thumb is that MC error should be <5% (1%)

MCMC – terminology

References

• Lunn, D. J., Best, N., & Whittaker, J. C. (2009). Generic reversible jump MCMC using
graphical models. Statistics and Computing, 19(4), 395-408.

• Lunn, D. J., Whittaker, J. C., & Best, N. (2006). A Bayesian toolkit for genetic
association studies. Genetic epidemiology, 30(3), 231-247.

• Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution,
critique and future directions. Statistics in medicine, 28(25), 3049-3067.

Questions?

Introduction to the BUGS language

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

What is BUGS?

• Simple & flexible language to build (write down) sometimes very complex
hierarchical models and analyze them in a Bayesian framework

• Implemented in a number of software packages

o WinBUGS (Gilks et al. 1994)

o OpenBUGS (Lunn et al. 2009)

o JAGS (Plummer 2003)

• WinBUGS and OpenBUGS are standalone software

• JAGS has command line interface

• All three usually best run from R using interface packages

What is BUGS?

All three applications:

• Let you describe a statistical model using the BUGS language

• Translates this description into an MCMC algorithm

• Run the algorithm according to your specifications to produce samples from the
joint posterior distribution of all unknown quantities in the model

• Provide functionalities for processing of results, convergence monitoring and so
forth

• If you are still not convinced how useful these applications are: Write your own
MCMC algorithm!!

What is BUGS?

BUGS

Bayesian inference Using Gibbs Sampling

WinBUGS

Bayesian inference Using Gibbs Sampling – Windows based
[no longer being developed, not open source]

OpenBUGS

Bayesian inference Using Gibbs Sampling – Open source
[currently active branch of the original BUGS project]

JAGS

Just Another Gibbs Sampler
[separate project but uses essentially the same language]

What is BUGS?

The term ‘BUGS’ will be used interchangeably

• The software WinBUGS/OpenBUGS

• The language used by WinBUGS/OpenBUGS/JAGS

“For most ecologists, WinBUGS is simply an ingenious MCMC blackbox. The analyst communicates

with the MCMC engine by providing a data set and describing a statistical model for it using a simple

and effective model definition language, the BUGS language (Gilks et al., 1994).”

From Kèry & Schaub book (2012):

Key components of BUGS language

• Nodes are the building blocks of BUGS

• Deterministic nodes:
o Assigned with <-

o Deterministic functions of other (parent) nodes

o e.g. x <- a + b

• Stochastic nodes:
o Assigned with ~

o Random variables, coming from a distribution

o e.g. x ~ dpois(lambda)

• Data
o Generally stochastic nodes

o Can also be fixed (parent) nodes, appearing only on the right side of equations

o e.g. a and b (above) could be data

Key components of BUGS language

• Nodes cannot be assigned in the form of vectors, matrices, arrays

• Almost all assignments have to happen element-wise in the form of for-loops

 for (i in 1:M){

 mu[i]<-alpha + beta * VAR[i]

 }

• Whereas in R we could simply write

 mu<-alpha + beta * VAR

• An exception is the Multivariate distribution:

 X[]~dmultinom(n, p[])

• BUGS is a declarative language, i.e. order of statements does (mostly) not matter

• Math functions and statistical distributions are listed in manuals

BUGS vs. glmr

• R functions lmer()/glmer() in package lme4 most widely used to fit mixed
models in ecology

• Mixed models = hierarchical models

• BUGS is much more flexible than glmer

• BUGS language a natural treatment of hierarchical models

• Bayesian implementation in BUGS allows focus on realizations of latent variables

Questions?

WinBUGS as a stand-alone application

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

BUGS and R

• We will almost exclusively be using the R packages to call WinBUGS/JAGS from
within R

• Important to get familiar with the workings of WinBUGS directly (if anything, just
to see how much more practical it is to use R)

 (1) Ingredients of a typical BUGS analysis

 (2) Demo - Fit a simple model (linear regression)

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Define parameters to be monitored

• Run model

• Look at output

Ingredients of a BUGS analysis

Write the model

e.g. consider a simple linear regression where observations, y, are a function of
some covariate, cov

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Ingredients of a BUGS analysis

Write the model

e.g. consider a simple linear regression where observations, y, are a function of
some covariate, cov

In R we would simply write

 lm(y ~ cov)

where 𝛼 (intercept), 𝛽 (slope) and 𝜎2 are parameters to be estimated but R takes
care of that ‘under the hood’.

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Ingredients of a BUGS analysis

Write the model

e.g. consider a simple linear regression where observations, y, are a function of
some covariate, cov

In BUGS we have to be more algebraically explicit

 # Likelihood
 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 }

where 𝛼 (intercept), 𝛽 (slope) and 𝜎2 are parameters to be estimated but R takes
care of that ‘under the hood’.

J = number of observations (sites, individuals etc…)

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Ingredients of a BUGS analysis

Write the model

In the BUGS we also have to specify prior distributions for our parameters

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

BUGS uses precision (inverse of the variance)

e.g. normal with mean 0 and 𝜎2= 1/0.001 = 1000

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

density.default(x = rnorm(5e+05, 0, 1000))

-4000 -2000 0 2000 4000

density.default(x = rnorm(50000, 0, 1000))

-10 -5 0 5 10

Ingredients of a BUGS analysis

Write the model

In the BUGS we also have to specify prior distributions for our parameters

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

BUGS uses precision (inverse of the variance)

e.g. normal with mean 0 and 𝜎2= 1/0.001 = 1000

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

density.default(x = rnorm(5e+05, 0, 1000))

-4000 -2000 0 2000 4000

density.default(x = rnorm(50000, 0, 1000))

-10 -5 0 5 10

Ingredients of a BUGS analysis

Write the model

model{

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)
Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 } #end j

} #end model

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Ingredients of a BUGS analysis

Write the model

model{

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)
Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 } #end j

} #end model

• Write the model

• Compile the data

o Load the data into WinBUGS

Ingredients of a BUGS analysis

Ingredients of a BUGS analysis

• Write the model

• Compile the data

o Load the data into WinBUGS

Ingredients of a BUGS analysis

• Write the model

• Compile the data

o Load the data into WinBUGS

o Select the number of parallel chains

Ingredients of a BUGS analysis

• Write the model

• Compile the data

o Load the data into WinBUGS

o Select the number of parallel chains

Ingredients of a BUGS analysis

• Write the model

• Compile the data

o Load the data into WinBUGS

o Select the number of parallel chains

oCompile the model and data

• Write the model

• Compile the data

• Provide (or generate) initial values

initial values ('inits')

list(alpha = 0, beta = 1, sigma = 1)

list(alpha = 0, beta = 1, sigma = 10)

list(alpha = 0, beta = 1, sigma = 100)

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

* Monitors all named nodes

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

o Select the number of iterations (updates)

oHit update

oViola!!!

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

Ingredients of a BUGS analysis

Lets do it!

Combined: lmWinBUGS.odc

Model: lmModelWinBUGS.odc

Data: lmDataWinBUGS.odc

Inits: lmInitsWinBUGS.odc

Data simulated using: 𝛼 = 0.5, 𝛽 = −1.5, 𝜎2 = 1

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Questions?

Accessing BUGS through R

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

Accessing BUGS through R

You can open IntroBUGSscript1.R and follow along if you like!

Generate data

generate data for a normal regression

J=100 #number of sampling points

cov<-rnorm(J, 2,2) #covariate

alpha<-0.5 #intercept

beta<--1.5 #coefficient

mu<-alpha+beta*cov #expected value

sd<-1

y<-rnorm(J,mu,sd) #observations

##analyze data using lm()

rmod<-lm(y~cov)

Model 1: 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝐶𝑂𝑉𝑗

• Write the model

• Compile the data

• Write an initial values function

• Determine parameters to be monitored

• Run model

• Look at output

The same for all
packages/programs

Package/program-specific

Ingredients of a BUGS analysis

Write the model

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑉𝐴𝑅𝑗

sink("binomGLMM.txt")

cat("

model{

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 } #end j

} #end model

",fill = TRUE)

sink()

Write the model to a text file!

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑉𝐴𝑅𝑗

sink("binomGLMM.txt")

cat("

model{

Priors

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 } #end j

} #end model

",fill = TRUE)

sink()

Data, initial values, parameters

Data

data<-list(J=J, cov=cov, y=y)

Initial values

• Supply initial values only for unobserved stochastic nodes

• Initial values have to fall within the range of support of the prior

inits<-function(){list(alpha=runif(1),

 beta=runif(1),

 sigma=runif(1,0,5))}

Parameters

params<-c("alpha", "beta", "sigma")

Run the model

• WinBUGS with R2WinBUGS

• OpenBUGS with R2WinBUGS/BRugs

• JAGS with R2JAGS or rjags

• Information needed:

oData, initial values, parameters

oNumber of parallel chains

oNumber of iterations

o Length of adaptive phase/burn-in

o Thinning interval

bugs(data, inits, parameters, model.file, n.chains=3,

 n.iter=5000,n.burn=1000,n.thin=1,debug=T)

Look at the output

• Gelman-Rubin (𝑅) statistic, effective sample size

o Included in R2WinBUGS and R2jags output

oCalled with extra commands for rjags output

• Trace plots – using xyplot()in package coda

oDo chains look grassy?

oDo they oscillate around the same mean?

• Posterior density plots – using densityplot() in package coda

oWere parameters estimable?

oAre posterior distributions truncated, skewed, multimodal, …?

Lets do it in R!

Demo

Data simulated using: 𝛼 = 0.5, 𝛽 = −1.5, 𝜎2 = 1

Script: IntroBUGSscript1.R

Exercise

Script: IntroBUGSscript2.R

Contains code to simulate data and write model

Your task: Complete steps to run Poisson regression in JAGS

(HINT: log() and dpois())

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Questions?

Mixed models in the BUGS language
(random effects)

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

GLM (fixed effect) GLMM (mixed effect)

Stochastic part 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎

2

Linear predictor 𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Hyper parameters ------- 𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼, 𝜎𝛼
2)

Random effects?

• Some parameters themselves may be realizations of a random process

• Lets consider a random intercept model

• i.e. intercepts come from a common distribution

GLM (fixed effect) GLMM (mixed effect)

Stochastic part 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎

2

Linear predictor 𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 𝜇𝑗 = 𝛼𝑘 + 𝛽𝑘 ∗ 𝑐𝑜𝑣𝑗

Hyper parameters -------
𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼, 𝜎𝛼

2)

𝛽𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽, 𝜎𝛽
2)

Random effects?

• Some parameters themselves may be realizations of a random process

• Lets consider a random intercept model

• i.e. intercepts come from a common distribution

Generate some data?

generate data for a normal regression

J = 100 # number of sampling points

cov <- rnorm(J, 2,2) # covariate

alpha <- 0.5 # intercept

beta <- -1.5 # coefficient

mu <- alpha+beta*cov # expected value

sd <- 1

y <- rnorm(J,mu,sd) # observations

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

GLM

Generate some data?

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership k=10

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha+beta*cov #expected value

sd <-1

y <- rnorm(J,mu,1) #observations

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

GLMM

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha+beta*cov #expected value

sd <-1

y <- rnorm(J,mu,1) #observations

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

GLMM Generate some data?

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha[grp]+beta*cov # expected value

sd <-1

y <- rnorm(J,mu,1) # observations

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

GLMM Generate some data?

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

Generate some data?

Fitting a Normal GLM in the BUGS language

• Write the model - likelihood

Likelihood for the GLM

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 }

GLM

Fitting a Normal GLMM in the BUGS language

Likelihood for the GLMM

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha[grp[j]] + beta * cov[j]

 }

• Write the model - likelihood

Likelihood for the GLM

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta * cov[j]

 }

GLMM

Fitting a Normal GLMM in the BUGS language

• Write the model - priors

Priors GLM

 alpha ~ dnorm(0,0.001)

 beta ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

Priors GLMM

 for(k in 1:n.gr){

 alpha[k] ~ dnorm(mu.alpha,tau.alpha)

 }

 mu.alpha ~ dnorm(0,0.001)

 tau.alpha <- 1/sd.alpha*sd.alpha

 sd.alpha ~ dunif(0,20)

 beta ~ dnorm(0,0.001)

 tau <- 1/(sigma*sigma)

 sigma ~ dunif(0,100)

Fitting a Normal GLMM in the BUGS language

• Write the model: model{

Priors GLMM

 for(k in 1:n.gr){

 alpha[k] ~ dnorm(mu.alpha,tau.alpha)

 }

 mu.alpha ~ dnorm(0,0.001)

 tau.alpha <- 1/sd.alpha*sd.alpha

 sd.alpha ~ dunif(0,20)

 beta ~ dnorm(0,0.001)

 tau <- 1/(sigma*sigma)

 sigma ~ dunif(0,100)

Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha[grp[j]] + beta * cov[j]

 }

}

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

• Write the model: model{

Priors GLMM

 for(k in 1:n.gr){

 alpha[k] ~ dnorm(mu.alpha,tau.alpha)

 }

 mu.alpha ~ dnorm(0,0.001)

 tau.alpha <- 1/sd.alpha*sd.alpha

 sd.alpha ~ dunif(0,20)

 beta ~ dnorm(0,0.001)

 #tau <- 1/(sigma*sigma)

 #sigma ~ dunif(0,100)

Likelihood

 for(j in 1:J){

 y[j] ~ dpois(mu[j])

 log(mu[j]) <- alpha[grp[j]] + beta * cov[j]

 }

}

𝑦𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜇𝑗

𝑙𝑜𝑔 (𝜇𝑗) = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

Fitting a Normal GLMM in the BUGS language

• Write the model: model{

Priors GLMM

 for(k in 1:n.gr){

 alpha[k] ~ dnorm(mu.alpha,tau.alpha)

 }

 mu.alpha ~ dnorm(0,0.001)

 tau.alpha <- 1/sd.alpha*sd.alpha

 sd.alpha ~ dunif(0,20)

 beta ~ dnorm(0,0.001)

 #tau <- 1/(sigma*sigma)

 #sigma ~ dunif(0,100)

Likelihood

 for(j in 1:J){

 y[j] ~ dbern(mu[j])

 logit(mu[j]) <- alpha[grp[j]] + beta * cov[j]

 }

}

𝑦𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑗

𝑙𝑜𝑔𝑖𝑡(𝜇𝑗) = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2)

Fitting a Normal GLMM in the BUGS language

Lets do it in R!

Demo

Normal GLM -> Normal GLMM

Script: normGLMM.R

Exercise

Script: binomGLMMEX.R

Contains code to simulate data and write model

Your task: Complete steps to run Binomial GLMM in JAGS

(HINT: logit() and dbern())

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

𝑦𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑗

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗

Questions?

Non-standard GLMMs – an occupancy model!

• Occupancy state (occupied: 𝑧𝑖 = 1 else 𝑧𝑖 = 0)

o rarely observed perfectly

𝑦𝑖 ≠ 𝑧𝑖

o a latent variable and a discrete random effects drawn from a Bernoulli distribution

 𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)

o data 𝑦𝑖 are imperfect observations of the true occupancy state from 𝐾 visits

 𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑧𝑖 ∗ 𝑝𝑖)

• Aim to estimate 𝑁, the number of occupied sites: 𝑁 = 𝑧𝑖

𝑀

𝑖=1

Non-standard GLMMs – an occupancy model!

• A standard occupancy model:

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝐾, 𝑝 ∗ 𝑧𝑖

• We can also account for site level heterogeneity in detection, e.g. detection
decreases with increasing vegetation cover (cover)

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝒑𝒊 ∗ 𝑧𝑖)
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽 ∗ cover𝑖

Non-standard GLMMs – an occupancy model!

Generate some data:

 set.seed(1235)

 M <- 100

 sim.psi <- 0.6

 K <- 3

 cover <- runif(M,-1,1)

 alpha <- 0

 beta <- -3

 sim.p <- plogis(alpha + beta*cover)

 plot(cover,sim.p)

 z.vec <- rbinom(M,1,sim.psi)

 p.eff <- sim.p * z.vec

 y <- rbinom(M,K,p.eff)

 N.true <- sum(z.vec)

 N.obs <- sum(y>0)

 (N.true) # 53 or 0.53

 (N.obs) # 42 or 0.42

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)
𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝒑𝒊 ∗ 𝑧𝑖)

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽 ∗ cover𝑖

Non-standard GLMMs – an occupancy model!

 sink("occMod.txt")

 cat("

 model{

 # Priors

 psi ~ dunif(0,1)

 alpha.p ~ dnorm(0,0.001)

 beta.p ~ dnorm(0,0.001)

 # Likelihood

 for(m in 1:M){

 z[m] ~ dbern(psi)

 y[m] ~ dbin(mu.p[m] * z[m],K)

 logit(mu.p[m]) <- alpha.p + beta.p * cover[m]

 } #end j

 N <- sum(z[]) # sum the z’s to derive N!!!

 } #end model

 ",fill = TRUE)

 sink()

𝑁 = 𝑧𝑖

𝑀

𝑖=1

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)
𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑝𝑖 ∗ 𝑧𝑖)

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽 ∗ cover𝑖

Lets do it in R!

Exercise

Script: occupancyEX.R

Contains code to simulate data and write model

Your task: Complete steps to fit the occupancy model in JAGS

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑝𝑖 ∗ 𝑧𝑖)

𝑝𝑖 = 𝛼 + 𝛽 ∗ cover𝑖

Questions?

Summary & Outlook

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

Summary

• Many ways to implement MCMC

oWin/Open BUGS, JAGS

oR2WinBUGS, R2jags, rjags

• Beyond BUGS

oBUGS language -> flexibility, transparency

oNatural means to deal with latent variables/random effects

oDo Bayesian analysis without writing samplers

oOften easier or even only way to code more complex hierarchical models

Beyond ‘simple’ BUGS

• Special features in Win/OpenBUGS

oWinBUGS Jump interface: Reversible jump MCMC

oAutologistic models

• Alternative MCMC software

o Stan (mc-stan.org): faster, different algorithms, but still somewhat limited
applicability

o SAS/STAT/R MCMC Procedure and other applications

oDo-it-yourself in R

Questions?

Categorical variables in the BUGS language

Model 2: 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2

𝜇𝑗 = 𝛼𝐶𝑂𝑉𝑗

for COV = {1, 2, 3, 1, 1, 2, 1…}

OR

𝜇𝑗 = 𝛼 + 𝛽2 ∗ 𝐶𝑂𝑉2𝑗 + 𝛽3 ∗ 𝐶𝑂𝑉3𝑗

For COV2 = {0, 1, 0, 0, 0, 1, 0,…}
 COV3 = {0, 0, 1, 0, 0, 0, 0,…}

Means parameterization

Contrast parameterization

Alternative parameterizations for a categorical variable

MEANS

Priors

 for(g in 1:ngr){

 alpha[g] ~ dnorm(0,0.001)

 }

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha[cov[j]]

 }

CONTRAST/REFERENCE

Priors

 for(g in 2:ngr){

 beta[g] ~ dnorm(0,0.001)

 }

 beta[1] <- 0

 alpha ~ dnorm(0,0.001)

 sigma ~ dunif(0,100)

 tau <- 1/(sigma*sigma)

Likelihood

 for(j in 1:J){

 y[j] ~ dnorm(mu[j],tau)

 mu[j] <- alpha + beta[cov[j]]

 }

Categorical variables in the BUGS language

Non-standard GLMMs – detection covariate

Data
data<-list(M=M, cover=cover, y=y)

Initial values
Supply initial values only for unobserved stochastic nodes
Initial values have to fall within the range of support of the prior
inits<-function(){list(psi=runif(1,0,1), alpha.p=runif(1),

 beta.p=runif(1), sigma=runif(1,0,5))}

Parameters
params<-c("psi","alpha", "beta", "sigma","N")

